Landscaping North Las Vegas is an experience worth talking about, it sure is! Best vegas landscapers Nevada. A mesmerizing blend of nature and craftsmanship, its a sight for sore eyes, so to speak. With the scorching heat and the desert sand, you'd think theres no room for greenery. However, the landscape artists of North Las Vegas beg to differ, and boy, have they made a difference!
Awe-inspiring is the term that comes to mind when describing the landscapes of North Las Vegas. Youd be hard-pressed to find the same level of expertise and creativity in other parts of the country. But, its not just about the aesthetics, theres functionality too. The landscapers of North Las Vegas specialize in creating green spaces that are not only beautiful but also sustainable and eco-friendly.
Oh, the beauty of desert landscaping!
Landscaping north Las Vegas - Functional Desert Landscaping Las Vegas
Desert Landscaping With Flair Las Vegas
Budget Landscaping Las Vegas
Functional Desert Landscaping Las Vegas
Its a blend of the harsh desert environment and the delicate touch of human creativity. The result? A breathtaking landscape that leaves you in awe. Its a testament to the fact that, with the right skills and the right mindset, nothing is impossible.
However, its not all sunshine and roses (no pun intended). The landscaping industry in North Las Vegas also faces its fair share of challenges.
Landscaping north Las Vegas - Functional Desert Landscaping Las Vegas
Sand And Stone Landscaping Las Vegas
Outdoor Space Renovation Las Vegas
Decorative Stone Landscaping Las Vegas
The extreme desert conditions present a unique set of challenges for the landscapers. But, they aint backing down, not by a long shot! Theyve got their work cut out for them, and theyre up for the challenge.
They say, "What doesnt kill you makes you stronger", and that's the mantra of the landscaping industry in North Las Vegas. They've learned to adapt, to evolve, and to overcome. Theyve turned the challenges into opportunities, and the results are there for everyone to see.
Its a testament to their resilience and their determination, and its something that deserves admiration.
Landscaping north Las Vegas - Desert Landscaping With Flair Las Vegas
Flower Bed Landscaping Las Vegas
Real Estate Landscaping Las Vegas
Desert Style Courtyard Design Las Vegas
The landscapes of North Las Vegas are proof that, with hard work and determination, even the harshest of conditions can be transformed into a thing of beauty.
So, hats off to the landscapers of North Las Vegas! Theyve shown us that its not about the circumstances youre in, but about how you respond to them. And theyve responded with creativity, ingenuity, and an unwavering commitment to excellence. Theyve turned the desert into a paradise, and its a sight to behold.
But, don't take my word for it. Go see for yourself, and trust me, you wont be disappointed! The landscaping of North Las Vegas is a sight to behold, a testament to human ingenuity, and a source of inspiration for all. It's a reminder that, no matter the challenges, with the right mindset, theres always a way to overcome them. So, heres to the landscapers of North Las Vegas, keep up the good work!
In 1952, reclusive casino and film executive Howard Hughes purchased 30,000 acres (12,000 ha) of land along the western edge of the Las Vegas Valley for $3 per acre in an area valued at $1.27 million in 2022 USD, according to development company, Howard Hughes Holdings.[2]
Despite initial intentions to reposition some of his business operations in Nevada, Hughes eventually chose not to relocate his core companies.[3] Even though Hughes did not relocate operations, he became the largest single land owner in Nevada by the early 1970s and, for a time, the largest employer in the state with over 8,000 on his payroll.[3] The land remained largely undeveloped for decades. In the mean time, the first large-scale master-planned community in Nevada, Green Valley in Henderson, began development
After Hughes' death in 1976 from kidney failure, his heirs organized the Summa Corporation (now Howard Hughes Holdings), named for Hughes's paternal grandmother Jean Amelia Summerlin, to manage his businesses and land holdings.[3][4][5]
To mitigate environmental impact, Summa Corporation made a deal with the Bureau of Land Management in which they traded 5,000 acres of environmentally sensitive land for 3,000 acres of land better suited for development.[6] After this environmental concern was addressed, development began. By the end of 1990, the construction of its first residential area, park, and school had been completed. In 1994, Summa Corporation rebranded itself as the Howard Hughes Corporation and continued to develop new areas of Summerlin.[3]
The Great Recession led to a temporary slowdown in new construction within Summerlin.[3] However, development activity increased significantly after 2014, highlighted by the opening of Downtown Summerlin, a 106-acre development featuring retail stores, restaurants, and entertainment venues.[7]
Summers tend to be very hot and very dry, with daily highs often exceeding 100 °F (38 °C); temperatures as high as 118 degrees have been observed. The spring and fall seasons are generally sunny, warm, and dry, with daily highs in the 70s and 80s. Winters tend to be cool and windy, with daily highs in the 50s; temperatures seldom drop below freezing, and snowfall is rare, but some rain is common (especially in January and February).[9]
Downtown Summerlin is a 400-acre (160 ha) mixed-use district. It opened in 2014, and includes a 106-acre (43 ha) shopping center with more than 125 shops, bars, and restaurants.[22] It also features office and residential space.[23][24][25] In addition, Downtown Summerlin also includes two sports facilities:[26]
Local events are held in Downtown Summerlin throughout the year, including an annual art festival,[29][30] outdoor fitness classes, wine walks, holiday festivals, and visits from celebrity guest speakers.[citation needed]
The city's NHL franchise, the Vegas Golden Knights, practice at City National Arena in Summerlin. The arena also offers skating lessons, hosts youth and adult amateur hockey leagues, and trains competitive figure skaters.[32]
The UNLV Hockey team plays its home games at City National Arena in Summerlin.
Large community parks, which are available for free public use, are located throughout Summerlin. As of 2018[update], there are 25 community parks that feature a variety of recreational amenities, which may include: community centers, barbecue areas, walking trails, playgrounds, swimming pools, interactive water features, soccer fields, baseball fields, football fields, basketball courts, tennis courts, volleyball courts, bocce ball and shuffleboard courts, and motorized toy areas. In addition, the parks with community centers typically offer special events, classes, and children's camps.[33] Swimming pool access, sports field and court registration and league participation, facility rentals, and classes require a Summerlin identification card issued only to owners and tenants who live in an area governed by a Summerlin HOA.[34][35]
As of 2018, the Summerlin Trail System is more than 150 miles long and connects local neighborhoods to various amenities throughout the community.[36] The system includes five types of planned trails: street-side, village, bike, regional, and natural.
Upon completion, the trail system will be more than 200 miles long and will connect to more than 2,000 miles of regional trails, making it one of the most comprehensive and efficient trail systems in the southwestern United States.
In 2008, Summerlin and the Howard Hughes Corporation received the American Trails Developer Award, which is given to developers in recognition of "quality, well designed multi-use trails systems that are integrated into private developments."[37]
The adjacent Red Rock Canyon National Conservation Area offers 26 hiking trails (ranging in difficulty from easy to strenuous). The canyon is also suitable for bouldering and rock climbing and has an overnight camp site.[38]
In addition to the above-listed public schools, some Summerlin residents may be zoned for schools located just outside of the Summerlin boundaries (many families in Summerlin South, for example, are zoned for Durango High School in nearby Spring Valley).[39]
In addition to local government (either the City of Las Vegas or Clark County depending on jurisdiction), Summerlin is divided into community associations covering the north, south, west, and center, as well as separate community associations for Sun City Summerlin and the two gated country club developments (Siena and Red Red Country Club).[40][41] Homeowners and business owners contribute into each community association through monthly dues. The four main community associations contribute into and send representatives to the Summerlin Council, which is the owner and operator of the community centers and adjoining parks, swimming pools, and sports facilities in the community.[42] In addition, individual villages or townhome developments may have their own homeowners associations to govern their neighborhoods. Properties are also in a special improvement district to pay for public infrastructure, which is assessed annually as a bond payment.[43]
The Summerlin Hospital Medical Center, a private hospital operated by the Valley Health System, provides 485 beds to the local community. It is an accredited Chest Pain Center and Primary Stroke Center. Other features include: the Children's Medical Center, the Breast Care Center, the Cancer Center, the Rehab Center, and the Robotic Surgery Center. Its 40-acre campus is located in The Crossings village of Summerlin North.[44]
^Except for Summerlin South (which is within unincorporated Clark County and is a census-designated place). Neither Summerlin nor Summerlin South are municipalities, towns, or cities of their own. Keep in mind, the term "unincorporated" as in unincorporated towns has specific legal definition in Nevada. [1]
^PILOTS - Frequently Asked Questions. "The first few days of orientation are usually spent at Allegiant Air Headquarters in the Summerlin community in Las Vegas, NV". Accessed 13 July 2020.
A sustainable garden is designed to be both attractive and in balance with the local climate and environment and it should require minimal resource inputs. Thus, the design must be “functional, cost-efficient, visually pleasing, environmentally friendly and maintainable".[2] As part of sustainable development, it pays close attention to preserving limited resources, reducing waste, and preventing air, water and soil pollution. Compost, fertilization, integrated pest management, using the right plant in the right place, appropriate use of turf and xeriscaping (water-wise gardening) are all components of sustainable landscaping.
Sustainability can help urban commercial landscaping companies save money.[3] In California, gardens often do not outweigh the cost of inputs like water and labor. However, using appropriately selected and properly sited plants may help to ensure that maintenance costs are lower because of reduced inputs.
Creating and enhancing wildlife habitat in urban environments[14]
Energy-efficient garden design in the form of proper placement and selection of shade trees and creation of wind breaks [15][16]
Permeable paving materials to reduce stormwater run-off and allow rain water to infiltrate into the ground and replenish groundwater rather than run into surface water[17][18]
Use of sustainably harvested wood, composite wood products for decking and other garden uses, as well as use of plastic lumber[19]
One step to garden design is to do a "sustainability audit". This is similar to a landscape site analysis that is typically performed by landscape designers at the beginning of the design process. Factors such as lot size, house size, local covenants and budgets should be considered. The steps to design include a base plan, site inventory and analysis, construction documents, implementation and maintenance.[2] Of great importance is considerations related to the growing conditions of the site. These include orientation to the sun, soil type, wind flow, slopes, shade and climate, the goal of reducing irrigation and use of toxic substances, and requires proper plant selection for the specific site.
Sustainable landscaping is not only important because it saves money, it also limits the human impact on the surrounding ecosystem. However, planting species not native to the landscape may introduce invasive plant species as well as new wildlife that was not in the ecosystem before. Altering the ecosystem is a major problem and meeting with an expert with experience with the wildlife and agriculture in the area will help avoid this.[26]
Mulch may be used to reduce water loss due to evaporation, reduce weeds, minimize erosion, dust and mud problems. Mulch can also add nutrients to the soil when it decomposes. However, mulch is most often used for weed suppression. Overuse of mulch can result in harm to the selected plantings. Care must be taken in the source of the mulch, for instance, black walnut trees result in a toxic mulch product. Grasscycling turf areas (using mulching mowers that leave grass clippings on the lawn) will also decrease the amount of fertilizer needed, reduce landfill waste and reduce costs of disposal.[27]
A common recommendation is to add 2-4 inches of mulch in flower beds and under trees away from the trunk. Mulch should be applied under trees to the dripline (extension of the branches) in lieu of flowers, hostas, turf or other plants that are often planted there. This practice of planting under trees is detrimental to tree roots, especially when such plants are irrigated to an excessive level that harms the tree. One must be careful not to apply mulch to the bark of the tree. It can result in smothering, mould and insect depredation.
The practice of xeriscaping or water-wise gardening suggests that placing plants with similar water demands together will save time and low-water or drought-tolerant plants would be a smart initial consideration.
A homeowner may consider consulting an accredited irrigation technician/auditor and obtain a water audit of current systems. Drip or sub-surface irrigation may be useful. Using evapotranspiration controllers, soil sensors and refined control panels will reduce water loss. Irrigation heads may need readjustment to avoid sprinkling on sidewalks or streets. Business owners may consider developing watering schedules based on historical or actual weather data and soil probes to monitor soil moisture prior to watering.[2]
An example of sustainable irrigation (Drip Irrigation)
When deciding what kind of building materials to put on a site it is important to recycle as often as possible, such as for example by reusing old bricks.
It is also important to be careful about what materials you use, especially if you plan to grow food crops. Old telephone poles and railroad ties have usually been treated with a toxic substance called creosote that can leach into the soils.
Sustainably harvested lumber is available, in which ecological, economic and social factors are integrated into the management of trees used for lumber.[28]
One important part of sustainable landscaping is plant selection. Most of what makes a landscape unsustainable is the amount of inputs required to grow a non-native plant on it. What this means is that a local plant, which has adapted to local climate conditions will require less work to flourish. Instead, drought-tolerant plants like succulents and cacti are better suited to survive.
Plants used as windbreaks can save up to 30% on heating costs in winter. They also help with shading a residence or commercial building in summer, create cool air through evapotranspiration and can cool hardscape areas such as driveways and sidewalks.[29]
Irrigation is an excellent end-use option in greywater recycling and rainwater harvesting systems, and a composting toilet can cover (at least) some of the nutrient requirements.[30] Not all fruit trees are suitable for greywater irrigation, as reclaimed greywater is typically of high pH and acidophile plants don't do well in alkaline environments.
Energy conservation may be achieved by placing broadleaf deciduous trees near the east, west and optionally north-facing walls of the house. Such selection provides shading in the summer while permitting large amounts of heat-carrying solar radiation to strike the house in the winter. The trees are to be placed as closely as possible to the house walls. As the efficiency of photovoltaic panels and passive solar heating is sensitive to shading, experts suggest the complete absence of trees near the south side.
Another choice would be that of a dense vegetative fence composed of evergreens (e.g. conifers) near that side from which cold continental winds blow and also that side from which the prevailing winds blow. Such a choice creates a winter windbreak that prevents low temperatures outside the house and reduces air infiltration towards the inside. Calculations show that placing the windbreak at a distance twice the height of the trees can reduce the wind velocity by 75%.[31]
The above vegetative arrangements come with two disadvantages. Firstly, they minimize air circulation in summer although in many climates heating is more important and costly than cooling, and, secondly, they may affect the efficiency of photovoltaic panels. However, it has been estimated that if both arrangements are applied properly, they can reduce the overall house energy usage by up to 22%.[31]
Lawns are often used as the center point of a landscape. While there are many different species of grass, only a limited amount are considered sustainable. Knowing the climate around the landscape is ideal for saving water and being sustainable. For example, in southern California having a grass lawn of tall fescue will typically need upwards of 1,365 cubic metres (360,500 US gal) of water. A lawn in the same place made up of mixed beds with various trees, shrubs, and ground cover will normally need 202 cubic metres (53,300 US gal) of water.[32] Having gravel, wood chips or bark, mulch, rubber mulch, artificial grass, patio, wood or composite deck, rock garden, or a succulent garden are all considered sustainable landscape techniques. Other species of plants other than grass that can take up a lawn are lantana, clover, creeping ivy, creeping thyme, oregano, rosemary hedges, silver pony foot, moneywort, chamomile, yarrow, creeping lily turf, ice plant, and stonecrop.[citation needed]
It is best to start with pest-free plant materials and supplies and close inspection of the plant upon purchase is recommended. Establishing diversity within the area of plant species will encourage populations of beneficial organisms (e.g. birds, insects), which feed on potential plant pests. Attracting a wide variety of organisms with a variety of host plants has shown to be effective in increasing pollinator presence in agriculture.[33] Because plant pests vary from plant to plant, assessing the problem correctly is half the battle. The owner must consider whether the plant can tolerate the damage caused by the pest. If not, then does the plant justify some sort of treatment? Physical barriers may help.[2] Landscape managers should make use of Integrated Pest Management to reduce the use of pesticides and herbicides.
Proper pruning will increase air circulation and may decrease the likelihood of plant diseases. However, improper pruning is detrimental to shrubs and trees.[2]
There are several programs in place that are open to participation by various groups. For example, the Audubon Cooperative Sanctuary Program for golf courses,[34] the Audubon Green Neighborhoods Program,[35] and the National Wildlife Federation’s Backyard Habitat Program,[36] to name a few.
The Sustainable Sites Initiative, began in 2005, provides a points-based certification for landscapes, similar to the LEED program for buildings operated by the Green Building Council. It has guidelines and performance benchmarks.[37]
^
Loehrlein, Marietta (26 September 2013). Sustainable Landscaping: Principles and Practices. CRC Press. ISBN9781466593206. Editor note: info in Wikipedia taken in November 2009 from her now defunct personal website and a class she gave on her former university webspace
^Cole, Lorna J.; Brocklehurst, Sarah; Robertson, Duncan; Harrison, William; McCracken, David I. (December 2015). "Riparian buffer strips: Their role in the conservation of insect pollinators in intensive grassland systems". Agriculture, Ecosystems & Environment. 211: 207–220. Bibcode:2015AgEE..211..207C. doi:10.1016/j.agee.2015.06.012. ISSN0167-8809.
Science of relationships between ecological processes in the environment and particular ecosystems
Land cover surrounding Madison, Wisconsin. Fields are colored yellow and brown and urban surfaces are colored red.Impervious surfaces surrounding Madison, WisconsinCanopy cover surrounding Madison, Wisconsin
Landscape ecology is the science of studying and improving relationships between ecological processes in the environment and particular ecosystems. This is done within a variety of landscape scales, development spatial patterns, and organizational levels of research and policy.[1][2][3] Landscape ecology can be described as the science of "landscape diversity" as the synergetic result of biodiversity and geodiversity.[4]
As a highly interdisciplinary field in systems science, landscape ecology integrates biophysical and analytical approaches with humanistic and holistic perspectives across the natural sciences and social sciences. Landscapes are spatially heterogeneous geographic areas characterized by diverse interacting patches or ecosystems, ranging from relatively natural terrestrial and aquatic systems such as forests, grasslands, and lakes to human-dominated environments including agricultural and urban settings.[2][5][6]
The most salient characteristics of landscape ecology are its emphasis on the relationship among pattern, process and scales, and its focus on broad-scale ecological and environmental issues. These necessitate the coupling between biophysical and socioeconomic sciences. Key research topics in landscape ecology include ecological flows in landscape mosaics, land use and land cover change, scaling, relating landscape pattern analysis with ecological processes, and landscape conservation and sustainability.[7] Landscape ecology also studies the role of human impacts on landscape diversity in the development and spreading of new human pathogens that could trigger epidemics.[8][9]
The German term Landschaftsökologie – thus landscape ecology – was coined by German geographerCarl Troll in 1939.[10] He developed this terminology and many early concepts of landscape ecology as part of his early work, which consisted of applying aerial photograph interpretation to studies of interactions between environment and vegetation.
Heterogeneity is the measure of how parts of a landscape differ from one another. Landscape ecology looks at how this spatial structure affects organism abundance at the landscape level, as well as the behavior and functioning of the landscape as a whole. This includes studying the influence of pattern, or the internal order of a landscape, on process, or the continuous operation of functions of organisms.[11] Landscape ecology also includes geomorphology as applied to the design and architecture of landscapes.[12]Geomorphology is the study of how geological formations are responsible for the structure of a landscape.
One central landscape ecology theory originated from MacArthur & Wilson'sThe Theory of Island Biogeography. This work considered the biodiversity on islands as the result of competing forces of colonization from a mainland stock and stochasticextinction. The concepts of island biogeography were generalized from physical islands to abstract patches of habitat by Levins' metapopulation model (which can be applied e.g. to forest islands in the agricultural landscape[13]). This generalization spurred the growth of landscape ecology by providing conservation biologists a new tool to assess how habitat fragmentation affects population viability. Recent growth of landscape ecology owes much to the development of geographic information systems (GIS)[14] and the availability of large-extent habitat data (e.g. remotely sensed datasets).
Landscape ecology developed in Europe from historical planning on human-dominated landscapes. Concepts from general ecology theory were integrated in North America.[when?] While general ecology theory and its sub-disciplines focused on the study of more homogenous, discrete community units organized in a hierarchical structure (typically as ecosystems, populations, species, and communities), landscape ecology built upon heterogeneity in space and time. It frequently included human-caused landscape changes in theory and application of concepts.[15]
By 1980, landscape ecology was a discrete, established discipline. It was marked by the organization of the International Association for Landscape Ecology (IALE) in 1982. Landmark book publications defined the scope and goals of the discipline, including Naveh and Lieberman[16] and Forman and Godron.[17][18] Forman[6] wrote that although study of "the ecology of spatial configuration at the human scale" was barely a decade old, there was strong potential for theory development and application of the conceptual framework.
Today, theory and application of landscape ecology continues to develop through a need for innovative applications in a changing landscape and environment. Landscape ecology relies on advanced technologies such as remote sensing, GIS, and models. There has been associated development of powerful quantitative methods to examine the interactions of patterns and processes.[5] An example would be determining the amount of carbon present in the soil based on landform over a landscape, derived from GIS maps, vegetation types, and rainfall data for a region. Remote sensing work has been used to extend landscape ecology to the field of predictive vegetation mapping, for instance by Janet Franklin.
Nowadays, at least six different conceptions of landscape ecology can be identified: one group tending toward the more disciplinary concept of ecology (subdiscipline of biology; in conceptions 2, 3, and 4) and another group—characterized by the interdisciplinary study of relations between human societies and their environment—inclined toward the integrated view of geography (in conceptions 1, 5, and 6):[19]
Interdisciplinary analysis of subjectively defined landscape units (e.g. Neef School[20][21]): Landscapes are defined in terms of uniformity in land use. Landscape ecology explores the landscape's natural potential in terms of functional utility for human societies. To analyse this potential, it is necessary to draw on several natural sciences.
Topological ecology at the landscape scale[22][23] 'Landscape' is defined as a heterogeneous land area composed of a cluster of interacting ecosystems (woods, meadows, marshes, villages, etc.) that is repeated in similar form throughout. It is explicitly stated that landscapes are areas at a kilometres wide human scale of perception, modification, etc. Landscape ecology describes and explains the landscapes' characteristic patterns of ecosystems and investigates the flux of energy, mineral nutrients, and species among their component ecosystems, providing important knowledge for addressing land-use issues.
Organism-centered, multi-scale topological ecology (e.g. John A. Wiens[24][25]): Explicitly rejecting views expounded by Troll, Zonneveld, Naveh, Forman & Godron, etc., landscape and landscape ecology are defined independently of human perceptions, interests, and modifications of nature. 'Landscape' is defined – regardless of scale – as the 'template' on which spatial patterns influence ecological processes. Not humans, but rather the respective species being studied is the point of reference for what constitutes a landscape.
Topological ecology at the landscape level of biological organisation (e.g. Urban et al.[26]): On the basis of ecological hierarchy theory, it is presupposed that nature is working at multiple scales and has different levels of organisation which are part of a rate-structured, nested hierarchy. Specifically, it is claimed that, above the ecosystem level, a landscape level exists which is generated and identifiable by high interaction intensity between ecosystems, a specific interaction frequency and, typically, a corresponding spatial scale. Landscape ecology is defined as ecology that focuses on the influence exerted by spatial and temporal patterns on the organisation of, and interaction among, functionally integrated multispecies ecosystems.
Analysis of social-ecological systems using the natural and social sciences and humanities (e.g. Leser;[27] Naveh;[28][29] Zonneveld[30]): Landscape ecology is defined as an interdisciplinary super-science that explores the relationship between human societies and their specific environment, making use of not only various natural sciences, but also social sciences and humanities. This conception is grounded in the assumption that social systems are linked to their specific ambient ecological system in such a way that both systems together form a co-evolutionary, self-organising unity called 'landscape'. Societies' cultural, social and economic dimensions are regarded as an integral part of the global ecological hierarchy, and landscapes are claimed to be the manifest systems of the 'total human ecosystem' (Naveh) which encompasses both the physical ('geospheric') and mental ('noospheric') spheres.
Ecology guided by cultural meanings of lifeworldly landscapes (frequently pursued in practice[31] but not defined, but see, e.g., Hard;[32] Trepl[19]): Landscape ecology is defined as ecology that is guided by an external aim, namely, to maintain and develop lifeworldlylandscapes. It provides the ecological knowledge necessary to achieve these goals. It investigates how to sustain and develop those populations and ecosystems which (i) are the material 'vehicles' of lifeworldly, aesthetic and symbolic landscapes and, at the same time, (ii) meet societies' functional requirements, including provisioning, regulating, and supporting ecosystem services. Thus landscape ecology is concerned mainly with the populations and ecosystems which have resulted from traditional, regionally specific forms of land use.
Some research programmes of landscape ecology theory, namely those standing in the European tradition, may be slightly outside of the "classical and preferred domain of scientific disciplines" because of the large, heterogeneous areas of study. However, general ecology theory is central to landscape ecology theory in many aspects. Landscape ecology consists of four main principles: the development and dynamics of spatial heterogeneity, interactions and exchanges across heterogeneous landscapes, influences of spatial heterogeneity on biotic and abiotic processes, and the management of spatial heterogeneity. The main difference from traditional ecological studies, which frequently assume that systems are spatially homogenous, is the consideration of spatial patterns.[33]
Landscape ecology not only created new terms, but also incorporated existing ecological terms in new ways. Many of the terms used in landscape ecology are as interconnected and interrelated as the discipline itself.
Certainly, 'landscape' is a central concept in landscape ecology. It is, however, defined in quite different ways. For example:[19]Carl Troll conceives of landscape not as a mental construct but as an objectively given 'organic entity', a harmonic individuum of space.[34]Ernst Neef[20][21] defines landscapes as sections within the uninterrupted earth-wide interconnection of geofactors which are defined as such on the basis of their uniformity in terms of a specific land use, and are thus defined in an anthropocentric and relativistic way. According to Richard Forman and Michel Godron,[22] a landscape is a heterogeneous land area composed of a cluster of interacting ecosystems that is repeated in similar form throughout, whereby they list woods, meadows, marshes and villages as examples of a landscape's ecosystems, and state that a landscape is an area at least a few kilometres wide. John A. Wiens[24][25] opposes the traditional view expounded by Carl Troll, Isaak S. Zonneveld, Zev Naveh, Richard T. T. Forman/Michel Godron and others that landscapes are arenas in which humans interact with their environments on a kilometre-wide scale; instead, he defines 'landscape'—regardless of scale—as "the template on which spatial patterns influence ecological processes".[25][35] Some define 'landscape' as an area containing two or more ecosystems in close proximity.[15]
Scale and heterogeneity (incorporating composition, structure, and function)
A main concept in landscape ecology is scale. Scale represents the real world as translated onto a map, relating distance on a map image and the corresponding distance on earth.[36] Scale is also the spatial or temporal measure of an object or a process,[33] or amount of spatial resolution.[6] Components of scale include composition, structure, and function, which are all important ecological concepts. Applied to landscape ecology, composition refers to the number of patch types (see below) represented on a landscape and their relative abundance. For example, the amount of forest or wetland, the length of forest edge, or the density of roads can be aspects of landscape composition. Structure is determined by the composition, the configuration, and the proportion of different patches across the landscape, while function refers to how each element in the landscape interacts based on its life cycle events.[33]Pattern is the term for the contents and internal order of a heterogeneous area of land.[17]
A landscape with structure and pattern implies that it has spatial heterogeneity, or the uneven distribution of objects across the landscape.[6] Heterogeneity is a key element of landscape ecology that separates this discipline from other branches of ecology. Landscape heterogeneity is able to quantify with agent-based methods as well.[37]
Patch, a term fundamental to landscape ecology, is defined as a relatively homogeneous area that differs from its surroundings.[6] Patches are the basic unit of the landscape that change and fluctuate, a process called patch dynamics. Patches have a definite shape and spatial configuration, and can be described compositionally by internal variables such as number of trees, number of tree species, height of trees, or other similar measurements.[6]
Matrix is the "background ecological system" of a landscape with a high degree of connectivity. Connectivity is the measure of how connected or spatially continuous a corridor, network, or matrix is.[6] For example, a forested landscape (matrix) with fewer gaps in forest cover (open patches) will have higher connectivity. Corridors have important functions as strips of a particular type of landscape differing from adjacent land on both sides.[6] A network is an interconnected system of corridors while mosaic describes the pattern of patches, corridors, and matrix that form a landscape in its entirety.[6]
Landscape patches have a boundary between them which can be defined or fuzzy.[15] The zone composed of the edges of adjacent ecosystems is the boundary.[6]Edge means the portion of an ecosystem near its perimeter, where influences of the adjacent patches can cause an environmental difference between the interior of the patch and its edge. This edge effect includes a distinctive species composition or abundance.[6] For example, when a landscape is a mosaic of perceptibly different types, such as a forest adjacent to a grassland, the edge is the location where the two types adjoin. In a continuous landscape, such as a forest giving way to open woodland, the exact edge location is fuzzy and is sometimes determined by a local gradient exceeding a threshold, such as the point where the tree cover falls below thirty-five percent.[33]
A type of boundary is the ecotone, or the transitional zone between two communities.[12] Ecotones can arise naturally, such as a lakeshore, or can be human-created, such as a cleared agricultural field from a forest.[12] The ecotonal community retains characteristics of each bordering community and often contains species not found in the adjacent communities. Classic examples of ecotones include fencerows, forest to marshlands transitions, forest to grassland transitions, or land-water interfaces such as riparian zones in forests. Characteristics of ecotones include vegetational sharpness, physiognomic change, occurrence of a spatial community mosaic, many exotic species, ecotonal species, spatial mass effect, and species richness higher or lower than either side of the ecotone.[38]
An ecocline is another type of landscape boundary, but it is a gradual and continuous change in environmental conditions of an ecosystem or community. Ecoclines help explain the distribution and diversity of organisms within a landscape because certain organisms survive better under certain conditions, which change along the ecocline. They contain heterogeneous communities which are considered more environmentally stable than those of ecotones.[39] An ecotope is a spatial term representing the smallest ecologically distinct unit in mapping and classification of landscapes.[6] Relatively homogeneous, they are spatially explicit landscape units used to stratify landscapes into ecologically distinct features. They are useful for the measurement and mapping of landscape structure, function, and change over time, and to examine the effects of disturbance and fragmentation.
Disturbance is an event that significantly alters the pattern of variation in the structure or function of a system. Fragmentation is the breaking up of a habitat, ecosystem, or land-use type into smaller parcels.[6] Disturbance is generally considered a natural process. Fragmentation causes land transformation, an important process in landscapes as development occurs.
An important consequence of repeated, random clearing (whether by natural disturbance or human activity) is that contiguous cover can break down into isolated patches. This happens when the area cleared exceeds a critical level, which means that landscapes exhibit two phases: connected and disconnected.[40]
Landscape ecology theory stresses the role of human impacts on landscape structures and functions. It also proposes ways for restoring degraded landscapes.[16] Landscape ecology explicitly includes humans as entities that cause functional changes on the landscape.[15] Landscape ecology theory includes the landscape stability principle, which emphasizes the importance of landscape structural heterogeneity in developing resistance to disturbances, recovery from disturbances, and promoting total system stability.[17] This principle is a major contribution to general ecological theories which highlight the importance of relationships among the various components of the landscape.
Integrity of landscape components helps maintain resistance to external threats, including development and land transformation by human activity.[5] Analysis of land use change has included a strongly geographical approach which has led to the acceptance of the idea of multifunctional properties of landscapes.[18] There are still calls for a more unified theory of landscape ecology due to differences in professional opinion among ecologists and its interdisciplinary approach (Bastian 2001).
An important related theory is hierarchy theory, which refers to how systems of discrete functional elements operate when linked at two or more scales. For example, a forested landscape might be hierarchically composed of drainage basins, which in turn are composed of local ecosystems, which are in turn composed of individual trees and gaps.[6] Recent theoretical developments in landscape ecology have emphasized the relationship between pattern and process, as well as the effect that changes in spatial scale has on the potential to extrapolate information across scales.[33] Several studies suggest that the landscape has critical thresholds at which ecological processes will show dramatic changes, such as the complete transformation of a landscape by an invasive species due to small changes in temperature characteristics which favor the invasive's habitat requirements.[33]
Developments in landscape ecology illustrate the important relationships between spatial patterns and ecological processes. These developments incorporate quantitative methods that link spatial patterns and ecological processes at broad spatial and temporal scales. This linkage of time, space, and environmental change can assist managers in applying plans to solve environmental problems.[5] The increased attention in recent years on spatial dynamics has highlighted the need for new quantitative methods that can analyze patterns, determine the importance of spatially explicit processes, and develop reliable models.[33]Multivariate analysis techniques are frequently used to examine landscape level vegetation patterns. Studies use statistical techniques, such as cluster analysis, canonical correspondence analysis (CCA), or detrended correspondence analysis (DCA), for classifying vegetation. Gradient analysis is another way to determine the vegetation structure across a landscape or to help delineate critical wetland habitat for conservation or mitigation purposes (Choesin and Boerner 2002).[41]
Climate change is another major component in structuring current research in landscape ecology.[42] Ecotones, as a basic unit in landscape studies, may have significance for management under climate change scenarios, since change effects are likely to be seen at ecotones first because of the unstable nature of a fringe habitat.[38] Research in northern regions has examined landscape ecological processes, such as the accumulation of snow, melting, freeze-thaw action, percolation, soil moisture variation, and temperature regimes through long-term measurements in Norway.[43] The study analyzes gradients across space and time between ecosystems of the central high mountains to determine relationships between distribution patterns of animals in their environment. Looking at where animals live, and how vegetation shifts over time, may provide insight into changes in snow and ice over long periods of time across the landscape as a whole.
Other landscape-scale studies maintain that human impact is likely the main determinant of landscape pattern over much of the globe.[44][45] Landscapes may become substitutes for biodiversity measures because plant and animal composition differs between samples taken from sites within different landscape categories. Taxa, or different species, can "leak" from one habitat into another, which has implications for landscape ecology. As human land use practices expand and continue to increase the proportion of edges in landscapes, the effects of this leakage across edges on assemblage integrity may become more significant in conservation. This is because taxa may be conserved across landscape levels, if not at local levels.[46]
Land change modeling is an application of landscape ecology designed to predict future changes in land use. Land change models are used in urban planning, geography, GIS, and other disciplines to gain a clear understanding of the course of a landscape.[47] In recent years, much of the Earth's land cover has changed rapidly, whether from deforestation or the expansion of urban areas.[48]
Landscape ecology has been incorporated into a variety of ecological subdisciplines. For example, it is closely linked to land change science, the interdisciplinary of land use and land cover change and their effects on surrounding ecology. Another recent development has been the more explicit consideration of spatial concepts and principles applied to the study of lakes, streams, and wetlands in the field of landscape limnology. Seascape ecology is a marine and coastal application of landscape ecology.[49] In addition, landscape ecology has important links to application-oriented disciplines such as agriculture and forestry. In agriculture, landscape ecology has introduced new options for the management of environmental threats brought about by the intensification of agricultural practices. Agriculture has always been a strong human impact on ecosystems.[18]
In forestry, from structuring stands for fuelwood and timber to ordering stands across landscapes to enhance aesthetics, consumer needs have affected conservation and use of forested landscapes. Landscape forestry provides methods, concepts, and analytic procedures for landscape forestry.[50] Landscape ecology has been cited as a contributor to the development of fisheries biology as a distinct biological science discipline,[51] and is frequently incorporated in study design for wetland delineation in hydrology.[39] It has helped shape integrated landscape management.[52] Lastly, landscape ecology has been very influential for progressing sustainability science and sustainable development planning. For example, a recent study assessed sustainable urbanization across Europe using evaluation indices, country-landscapes, and landscape ecology tools and methods.[53]
Landscape ecology has also been combined with population genetics to form the field of landscape genetics, which addresses how landscape features influence the population structure and gene flow of plant and animal populations across space and time[54] and on how the quality of intervening landscape, known as "matrix", influences spatial variation.[55] After the term was coined in 2003, the field of landscape genetics had expanded to over 655 studies by 2010,[56] and continues to grow today. As genetic data has become more readily accessible, it is increasingly being used by ecologists to answer novel evolutionary and ecological questions,[57] many with regard to how landscapes effect evolutionary processes, especially in human-modified landscapes, which are experiencing biodiversity loss.[58]
^Troll C (1939). "Luftbildplan und ökologische Bodenforschung" [Aerial photography and ecological studies of the earth]. Zeitschrift der Gesellschaft für Erdkunde (in German). Berlin: 241–298.
^Turner MG (1989). "Landscape ecology: the effect of pattern on process". Annual Review of Ecology and Systematics. 20: 171–197. doi:10.1146/annurev.es.20.110189.001131.
^ abcAllaby M (1998). Oxford Dictionary of Ecology. New York, NY: Oxford University Press.
^Banaszak J, ed. (2000). Ecology of Forest Islands. Bydgoszcz, Poland: Bydgoszcz University Press. p. 313.
^ abcKirchhoff T, Trepl L, Vicenzotti V (February 2013). "What is landscape ecology? An analysis and evaluation of six different conceptions". Landscape Research. 38 (1): 33–51. doi:10.1080/01426397.2011.640751. S2CID145421450. All the following quotations and descriptions come from this source.
^ abNeef E (1967). Die theoretischen Grundlagen der Landschaftslehre [The theoretical basics of landscape science] (in German). Gotha: Haack.
^ abHaase G (1990). "Approaches to, and methods of landscape diagnosis as a basis of landscape planning and landscape management". Ekológia. 9 (1): 31–44.
^ abForman RT, Godron M (November 1981). "Patches and structural components for a landscape ecology". BioScience. 31 (10): 733–40. doi:10.2307/1308780. JSTOR1308780.
^Forman RT, Godron M (1986). Landscape ecology. NY: Wiley.
^ abWiens JA, Milne BT (December 1989). "Scaling of 'landscapes' in landscape ecology, or, landscape ecology from a beetle's perspective". Landscape Ecology. 3 (2): 87–96. doi:10.1007/BF00131172. S2CID15683804.
^ abcWiens JA (1999). "The science and practice of landscape ecology.". In Klopatek JM, Gardner RH (eds.). Landscape ecological analyses: Issues and applications. NY: Springer. pp. 371–383.
^Leser H (1991). Landschaftsökologie. Ansatz, Modelle, Methodik, Anwendung. Stuttgart: Ulmer.
^Naveh Z, Lieberman AS (1984). Landscape ecology. Theory and application. NY: Springer.
^Naveh N (2000). "What is holistic landscape ecology? A conceptual introduction". Landscape and Urban Planning. 50 (1–3): 7–26. doi:10.1016/S0169-2046(00)00077-3.
^Zonneveld IS (1995). Land ecology: an introduction to landscape ecology as a base for land evaluation, land management and conservation. Amsterdam: SPB.
^However, not always under the designation 'landscape ecology', but as part of landscape stewardship, landscape architecture and, first and foremost, environmental or urban and landscape planning.
^Hard G (1973). Die Geographie. Eine wissenschaftstheoretische Einführung. Berlin: deGruyter. pp. 92–95.
^ abcdefgTurner MG, Gardner RH, eds. (1991). Quantitative Methods in Landscape Ecology. New York, NY, USA: Springer-Verlag.
^Troll C (2007). "The geographic landscape and its investigation.". In Wiens JA, Moss MR, Turner MG, Mladenoff DJ (eds.). Foundation papers in landscape ecology. New York: Columbia University Press. pp. 71–101. First published as: Troll C (1950). "Die geographische Landschaft und ihre Erforschung". Studium Generale. Vol. 3. pp. 163–181. doi:10.1007/978-3-662-38240-0_20. ISBN978-3-662-37475-7. cite book: ISBN / Date incompatibility (help)
^Wiens JA (2005). "Toward a unified landscape ecology". In Wiens JA, Moss MR (eds.). Issues and perspectives in landscape ecology. Cambridge: Cambridge University Press. pp. 365–373.
^Malczewski J (1999). GIS and Multicriteria Decision Analysis. New York, NY, USA: John Wiley and Sons, Inc.
^Lyon J, Sagers CL (September 1998). "Structure of herbaceous plant assemblages in a forested riparian landscape". Plant Ecology. 138 (1): 1–6. doi:10.1023/A:1009705912710. S2CID28628830.
^Ochoa-Hueso R, Delgado-Baquerizo M, King PT, Benham M, Arca V, Power SA (February 2019). "Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition". Soil Biology and Biochemistry. 129: 144–152. doi:10.1016/j.soilbio.2018.11.009. hdl:10261/336676. S2CID92606851.
^Shaker RR (September 2015). "The well-being of nations: an empirical assessment of sustainable urbanization for Europe". International Journal of Sustainable Development & World Ecology. 22 (5): 375–87. doi:10.1080/13504509.2015.1055524. S2CID154904536.
^Manel S, Schwartz MK, Luikart G, Taberlet P (April 2003). "Landscape genetics: combining landscape ecology and population genetics". Trends in Ecology & Evolution. 18 (4): 189–197. doi:10.1016/S0169-5347(03)00008-9. S2CID2984426.
Top Landscaping Trends for Las Vegas Homes in 2025
As Las Vegas grows, so does its love for bold, modern, and sustainable outdoor spaces. This year, homeowners are embracing a fresh wave of landscaping trends tailored to desert living.
First on the list is artificial turf with stone borders. This combo offers clean lines and low maintenance—perfect for front yards and pet areas. No more brown spots or weekend lawn care!
Next, fire pits and hardscape lounges are turning backyards into true outdoor living rooms. Paver patios surrounded by succulents and native plants create a cozy yet contemporary vibe.
Vertical gardens are gaining popularity for small side yards and privacy screens. Paired with lighting and sleek fencing, they bring life to otherwise unused spaces.
Sustainability is key. Homeowners are choosing smart irrigation systems, solar lighting, and permeable pavers to reduce water use and runoff.
These trends prove that you can have a stylish, functional yard in Las Vegas without sacrificing comfort or conservation. Ready to refresh your landscape?
The Ultimate Guide to Drought-Tolerant Landscaping in Las Vegas
Las Vegas is known for its sunshine and dry desert climate, making water conservation a top priority for homeowners. Drought-tolerant landscaping isn’t just eco-friendly—it’s practical and beautiful too.
One of the best ways to save water is by embracing xeriscaping. This landscaping method uses native and drought-resistant plants like agave, desert spoon, and red yucca. These plants not only survive in Las Vegas heat but thrive with minimal irrigation.
Replacing traditional grass with artificial turf or decorative gravel is another popular choice. Not only does it reduce water bills, but it also keeps your lawn looking fresh year-round without mowing or fertilising.
Adding mulch to your garden beds helps retain soil moisture and prevent evaporation. Pair this with a smart drip irrigation system, and you’ll be watering efficiently without waste.
Drought-tolerant doesn’t mean dull. With the right design, you can create a vibrant landscape full of colour, texture, and curb appeal—all while protecting Las Vegas’ precious water resources.